

Tested & Approved STEM Activities

Space Science Programming

Teacher's Guide

Collaborate with us!

- Send students home with flyers or link to the library from your classroom website.
- Plan an event with us, or encourage students to volunteer!

Please contact ______ at _____ to discuss

how we can work together to increase the community's STEM engagement!

Classroom Connections

There are a variety of websites with space science activities for different grade levels:

- NASA Wavelength: Catalogue of activities and resources <u>nasawavelength.org</u>
- Lunar and Planetary Institute: Educator Resources <u>www.lpi.usra.edu/education/resources/</u>
- Project Spectra! @LASP: Activities about light and spectra lasp.colorado.edu/education/spectra/index.htm

Younger elementary students (K-2)

These students are eager to learn about space, and can:

- Listen to or read different cultural stories about the night sky.
- Observe changes in the sky—the daily motions of the Sun, the changing appearance of the Moon, and the appearance of planets such as Venus.
- Compare the physical properties of objects in the solar system, such as states of matter, temperatures, and sizes.

Older elementary students (grades 3-5)

These students are able to integrate objects such as planets and stars into systems, and can:

- Model the sizes and distances of objects in the solar system, as well as their orbits.
- Categorize the planets, their moons, the comets, and asteroids as objects within the solar system, and stars as objects within the galaxy.
- Measure and record patterns of change in appearances of the Moon, the positions of the Sun during the day, and certain constellations in different seasons.

Middle school students (grades 6-8)

These students are able to analyze spatially challenging concepts such as lunar phases and seasons, and can:

- Model lunar phases and seasons and describe their causes.
- Apply physical concepts of density, mass and gravity, and composition to objects within the solar system and galaxy.
- Compare characteristics of Earth and other planetary objects, such as interior structure, surface features such as volcanoes and craters, magnetic fields, and weather patterns.

Student Research

Middle school and high school student may conduct their own research or science fair projects using online space science data, such as:

- Eyes on the Solar System: <u>solarsystem.nasa.gov/eyes/</u> Students can observe solar system objects and planetary missions and their positions in the solar system.
- MicroObservatory Robotic Telescope Network: <u>mo-www.cfa.harvard.edu/OWN/index.html</u> Students use a network of automated telescopes over the internet to investigate the wonders of the deep sky from their classrooms or after-school centers.
- Zooniverse: <u>www.zooniverse.org</u> This citizen science site provides opportunities for people around the world to contribute to real discoveries in fields ranging from astronomy to zoology.

Other Useful Websites: Solar System Exploration solarsystem.nasa.gov StarChild starchild.gsfc.nasa.gov Amazing Space amazingspace.org

- JMARS: jmars.asu.edu/ This site is a geospatial information system to provide mission planning and data-analysis tools to NASA's orbiters, instrument team members, students of all ages, and the general public.
- **Planetary Data System:** pds.jpl.nasa.gov/tools/data-search/ A website that accesses a variety of catalogues with planetary data.
- Galaxies and Cosmos Explorer Tool (GCET): <u>www.as.utexas.edu/gcet/browser.html</u> Hubble images of background galaxies can be analyzed.
- Exoplanets Encyclopedia: <u>exoplanet.eu/catalog.php</u> This catalogue of discovered planets is sortable by several different factors.
- World Wide Telescope: www.worldwidetelescope.org/Home.aspx This site utilizes images and data to explore high resolution images of the universe in multiple wavelengths.

Connections to Science Standards

The concepts and activities within the *STAR_Net* space science exhibits and library programming resources connect to a variety of the Next Generation Science Standards.

Space Science: Disciplinary Core Ideas

- ESS1.A: The universe and its stars: The solar system is part of the Milky Way, which is one of many billions of galaxies.
- ESS1.B: Earth and the solar system: The solar system contains many varied objects held together by gravity.

Science & Engineering Practices

- Asking questions and defining problems
- Developing and using models
- Planning and carrying out investigations
- Analyzing and interpreting data
- Obtaining, evaluating, and communicating information

Crosscutting Concepts

- Patterns
- Scale, proportion, and quantity
- Systems and system models.
- Structure and function

Key Space Science Concepts

How We Explore Space

Scientists and engineers use a variety of methods to gather data about space:

- Telescopes, which use mirrors and lenses to collect light.
- Robotic missions to other places in our solar system.
- Instruments to examine magnetic fields, gravity, particles, light, and more.

Light

- White light can be broken into different colors of the spectrum.
- There are some types of light that we can't see, including radio, infrared, ultraviolet, x-ray, and gamma rays.
- Our Sun and other stars give off all these different types of light.
- Examining details about light can tell us about an object's temperature, motion, composition, and more.

The Solar System

- This includes the Sun and everything that orbits it: planets and their moons, asteroids, and comets, dust, and lots of empty space.
- The distances between the planets' orbits is very large compared to the sizes of the planets.
- Asteroids and comets can and have hit the Earth and other planets and moons throughout the history of the solar system, exploding and leaving craters.
- Meteorites are pieces of asteroids, comets, and other objects that have fallen onto Earth's surface.

A product of the Science-Technology Activities and Resources for Libraries (STAR_Net) program. Visit our website at <u>www.starnetlibraries.org</u> for more information on our educational programs. Developed by the Lunar and Planetary Institute/Universities Space Research Association November 2016

This material is based upon work supported by the National Science Foundation under Grant No. DRL-1421427. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.